
www.manaraa.com

University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Master's Theses Graduate School

2007

RLINKS: A MECHANISM FOR NAVIGATING TO RELATED FILES RLINKS: A MECHANISM FOR NAVIGATING TO RELATED FILES

Naveen Akarapu
University of Kentucky, naveenakarapu@yahoo.com

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Akarapu, Naveen, "RLINKS: A MECHANISM FOR NAVIGATING TO RELATED FILES" (2007). University of
Kentucky Master's Theses. 467.
https://uknowledge.uky.edu/gradschool_theses/467

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more
information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

www.manaraa.com

ABSTRACT OF THESIS

RLINKS: A MECHANISM FOR NAVIGATING TO RELATED FILES

This thesis introduces Relative links or rlinks, which are directed labeled links from one file
to another in a file system. Rlinks provide a clean way to build and share related-file
information without creating additional files and directories. Rlinks form overlay graphs
between files of a file system, thus providing useful alternate views of the file system. This
thesis implements rlinks for the Linux kernel and modifies the storage structure of the Ext2
file system to store the rlinks.

KEYWORDS: Rlinks, Linux kernel, Ext2, related files, file system

Naveen Akarapu

08/03/2007

www.manaraa.com

RLINKS: A MECHANISM FOR NAVIGATING TO RELATED FILES

By

Naveen Akarapu

Dr. Raphael A. Finkel

(Director of Thesis)

Dr. Raphael A. Finkel

(Director of Graduate Studies)

August 3, 2007

www.manaraa.com

RULES FOR THE USE OF THESES

Unpublished theses submitted for the Master s degree and deposited in the University of
Kentucky Library are as a rule open for inspection, but are to be used only with due regard
to the rights of the authors. Bibliographical references may be noted, but quotations or
summaries of parts may be published only with the permission of the author, and with the
usual scholarly acknowledgments.

Extensive copying or publication of the thesis in whole or in part also requires the consent
of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this thesis for use by its patrons is expected to secure the signature
of each user.

Name Date

www.manaraa.com

THESIS

Naveen Akarapu

The Graduate School

University of Kentucky

2007

www.manaraa.com

RLINKS: A MECHANISM FOR NAVIGATING TO RELATED FILES

THESIS

A thesis submitted in partial fulfillment of the
requirements of the degree of Master of Science in the
College of Engineering at the University of Kentucky

By

Naveen Akarapu

Lexington, Kentucky

Director: Dr. Raphael A. Finkel, Professor of Computer Science

Lexington, Kentucky

2007

www.manaraa.com

MASTER'S THESIS RELEASE

I authorize University of Kentucky Libraries to reproduce
this thesis in whole or in part for purposes of research.

Signed: Naveen Akarapu

 Date: August 3, 2007

www.manaraa.com

ACKNOWLEDGMENTS

I am greatly thankful to Dr. Raphael Finkel for his continuous support and guidance.

Without his encouragement I would have abandoned the thesis. Working under his

guidance brought the best out of me. Many ideas implemented in this thesis originated in

my meetings with Dr. Finkel.

I thank my parents for their support and confidence in me throughout the process. I thank

my two brothers for their constant encouragement.

iii

www.manaraa.com

TABLE OF CONTENTS

ABSTRACT OF THESIS..1
RLINKS: A MECHANISM FOR NAVIGATING TO RELATED FILES..............................5
ACKNOWLEDGMENTS..7
TABLE OF CONTENTS...8
LIST OF FIGURES..9

1. Introduction..1

2. Related Work..1

3. Problem Explanation..2

4. Background...5
4.1 System calls...5
4.2 The Virtual Filesystem ...5
4.3 Buffer cache...8
4.4 Page I/O and block I/O..8
4.5 Kernel Synchronization...9
4.6 The Ext2 Filesystem ...10

5. Relative Links (rlinks)..12

6. Implementation of Rlinks ..14
6.1 System calls...14
6.2 Implementation design..17

6.2.1 VFS Layer..17
6.2.2 RelExt2 Layer..18
6.2.3 Rlink block layer...21

6.3 System call algorithms..23
6.3.1 The rlink() system call...23
6.3.2 The readrlink() system call..27
6.3.3 The unrlink() system call...30

7.Applications...33
7.1 Rlinks as connecting related files..33
7.2 Rlinks to represent a graph..34

8 Conclusions...36

9 Future Work...36

Appendix A: Rlink Permission semantics..37
Appendix B: Data Structures Reference..40

References..46

Vita..47

iv

www.manaraa.com

LIST OF FIGURES

4.1 Invoking a system call...5

4.2 Control flow through VFS...6

4.3 Layout of an Ext2 partition..10

4.4 An example Ext2 directory..11

5.1 An rlink..12

6.1 Layout of an rlink block..22

7.1 An rlink graph..35

v

www.manaraa.com

1. Introduction

This thesis tackles the problem of organizing related information on a filesystem.
Specifically, by related information we mean related files. Being able to easily find related
files helps users maintain their filesystem and enhances their experience accessing files. As
discussed later in Section 3, current mechanisms like directories and symbolic links are
ineffective for this purpose. This thesis introduces a new type of links called Relative Links
or rlinks. Rlinks are directed labeled links from one file to another. By placing a file inside
a directory that points to another file, symbolic links and hard links semantically create a
link from that directory to the pointed file. Instead, rlinks create links between two files.
This thesis implements rlinks for the Ext2 filesystem by changing Ext2's directory storage
structure.

2. Related Work

Semantic File systems

In one of the earliest papers in this field, Gifford et al [1] define a semantic file system as
“an information storage system that provides associative access to the system's contents by
automatically extracting attributes from files with file type specific transducers [sometimes
called importers]”. Traditional directories are replaced by virtual directories, whose
names are interpreted as queries to a query engine. A semantic file system is typically an
abstraction layer on top of a traditional filesystem like ext2 or reiserfs.

GLScube [2] is a recently developed semantic file system. GLScube collects rich meta data
for files. Importers provided for each file type understand files and store relevant
information about them in a database. In addition, users can assign tags to files and also
create relations with other files. Users access data through virtual collections, whose
contents are created dynamically through their associated queries. GLScube is
implemented as a user-space file system that augments the features of the underlying file
system.

The Be File System [3] provides extensive support for storing a file's attributes. Database
functionalities like indexing and querying these attributes are also built into the kernel. The
Be File System was designed specifically for Be OS.

Other semantic file systems are DBFS [7] and The Placeless documents [4].

Extended Attributes

Extended attributes were introduced in Linux kernel 2.6 to store meta-data to a file (or
directory) in addition to its common attributes like permissions. Each extended attribute is
a name-value pair associated with a file. The name and the value can be any string.

1

www.manaraa.com

The most common application of Extended Attributes is to implement POSIX Access
Control Lists (ACL). They can also be used for things like storing the character encoding
of a file, song information of a music/mp3 file, or tags of a file. A search application,
Beagle, uses extended attributes for indexing a file.

3. Problem Explanation

The goal of this thesis is to create a mechanism by which one can easily see and reach
related information of a filesystem object (which on Unix systems is a file). Another goal is
to build this feature into a filesystem and inside the kernel, both for learning and
performance reasons.

Significance of accessible related information

Many successful websites on the Internet provide related information on most of their web
pages. Successful social-networking sites like MySpace and Orkut provide links to
'Friends' (related people) in every profile. Almost every news website now assigns a
portion of each of its article pages for links to related news. A game-report page of an NFL
playoff game, for example, has links to game reports or live scorecards of other playoff
games. Such information helps the user explore the area, in this case the NFL playoff
games, better.

Many parallels can be drawn between a desktop and a website like that of the BBC. People
looking for a particular news item have to traverse the hierarchical organization of
information. For example, someone trying to know about a US Open Tennis match would
have to traverse through Home Page → Sport → Tennis → US Open. This “US Open”
page, which contains all the news (that is, links to news pages) about the tournament, is
similar to a directory that contains files pertaining to a project. From this page, when a
user opens the news page of one particular match he is interested in, probably because it
features his favorite player, he finds other news about the match and the players involved in
the “related news” section of the page.

Sometimes the “related news” section contains links to news that belong to a category
different from that of the current page, like a link to a page reporting the day's weather
from a match report page. Typically, websites organize information hierarchically. If a
web page (like the weather page) has information that crosses domains, it first is placed in
the domain it predominantly belongs to; then a link to the page is provided from the other
domains related news section. This strategy is very similar to placing a file in a directory
and creating a symbolic link to that file in a related directory.

Significance of finding related files on a filesystem

A person working on a filesystem object, be it a music file, a video file, a project
document, or a program, would be greatly assisted by having related information that's
easily accessible.

2

www.manaraa.com

Just as related information is useful in web pages (or website objects), providing related
information is also useful for filesystem objects. For example, installing software usually
involves placing its components in different directories. The package file is downloaded
into one place, the source code is extracted to another directory, and after compilation the
programs are installed in (often copied to) another directory. When there is a need to
maintain the software or uninstall it, it is difficult to learn the whereabouts of all its
components. If one could instead know the install directory and the source code of the
program he is interested in just by requesting related files of the program, the task would be
a lot easier.

The ever increasing multimedia contents on a filesystem can be organized by storing the
related multimedia associated with a multimedia object. For example, one could create a
relation between an audio mp3 file, which is usually stored in the audio part of directory
hierarchy, and its corresponding video file, which is usually stored among videos.
Similarly, a relation could be created from the video file to a movie in which the artist
acted. By following such relations, a user can reach all the information he is interested in.

Now that the significance of accessibility of related information in general and on
computer systems is established, let's take a look at existing mechanisms that help us
achieve that.

The present techniques in Unix-like systems for making related files easily accessible from
each other are directories and links. All the files belonging to a project, for example, are
placed in a directory (with possible sub-directories). This organization implies that each file
in the directory is equally strongly related to every other file in the directory, which is not
always the case, especially in a directory containing many files. Files within a directory
tend to have subtle relationships between them, in addition to the general directory relation.

Furthermore, keeping track of related files is difficult when a file semantically belongs to
more than one directory and its related files exist in multiple directories. One solution is
placing symbolic links in all the directories containing files related to the file. In addition to
increasing the complexity of the directory tree by adding to its entries, such links are
tedious to create and manage. Studies [4] have shown that symbolic links are ineffective in
these situations.

Some of the feature-rich semantic file systems mentioned above do have mechanisms to
reach related files. But they come with a cost of performance. They are typically
implemented in user space. A huge amount of information is collected for each file in a
database management system (DBMS) and is maintained through daemons that keep track
of all changes to the filesystem. This setup is often a significant overhead for the majority
of simple tasks. Moreover, the goal of the semantic file systems is more extensive than that
of this thesis. It includes changing the hierarchical file-access methodology to something
more intuitive and easy. This thesis only augments the hierarchical file-access method with
a new feature.

Extended attributes are built into the operating system and the filesystem, which makes
accessing meta- data using extended attributes faster than that using the semantic file

3

www.manaraa.com

systems. Using the attributes associated with a file, a search can retrieve files with similar
attributes. A limitation of such an attribute-based search is that it returns files that are
connected only indirectly and loosely: Two completely unrelated files can independently
have the same tag.

Rlinks, which we introduce in this thesis to solve the problem, provide a way to store
related-file information of a file. They are built into the kernel, which makes them very
fast. They do not increase the complexity of a directory by adding more entries to it. Rlinks
are directed links, which helps in defining finer relationships between files. Rlinks
distribute the related-file information throughout the filesystem, instead of storing it in a
centralized file or database. Hence in the event of an accidental deletion, only the related-
file information of the deleted files is lost.

Because rlinks are directed labeled links from one file to another, they create a logical
graph in which files of the filesystem are the vertices and rlinks are the arcs. This graph can
be traversed by search and other applications.

Section 5 describes the semantics chosen for rlinks, Section 6 explains an implementation
of rlinks and Section 7 contains some applications that use rlinks.

4

www.manaraa.com

4. Background

Linux is a free and open-source operating system, originally developed by Linus Torvalds
in 1991. It implements Unix's API but has completely independent source code and design.
The Linux kernel version used for this project is 2.4.33.3.

The Linux kernel is licensed under GNU General Public License (GPL) version 2.0.
Consequently, its source code can be freely downloaded and modified. The modified kernel
can be distributed, but only under the same license. The 2.4 kernel aims to be compliant
with IEEE POSIX standard API.

Most of the content in this section has been summarized from Bovet & Cesati [5] and Love
[6].

4.1 System calls

System calls are the interface through which processes running in user space interact with
the kernel.

System calls are software interrupts or exceptions. Every system call is assigned a number,
which is passed to the interrupt handler when a system call is invoked. The interrupt
handler (named system_call()) looks up the system-call dispatch table stored in the
sys_call_table array, and calls the system-call service routine indexed by the system
call number. The service routine of a system call is named by the system call name prefixed
by sys_. This invocation chain is illustrated in Figure 4.1 (redrawn from [6]).

Figure 4.1: Invoking a system call.

4.2 The Virtual Filesystem

The Linux kernel has various subsystems like memory management, networking, device
drivers, process management and process scheduling. The subsystem this thesis deals
primarily with is the filesystem.

The Virtual Filesystem Switch (VFS) is the subsystem of the kernel that implements the
filesystem-related interfaces provided to user-space programs. VFS allows multiple
filesystems to coexist and interoperate. The VFS enables system calls like open(), read()

5

System call sys_read()
handler

Application C library
 read() wrapper

call read() read()
wrapper system_call() sys_read()

www.manaraa.com

and write() to work regardless of the filesystem of the underlying physical medium.
Such a generic interface for any type of filesystem is feasible because the kernel
implements an abstraction layer around its low-level filesystem interface. VFS provides a
common file model that is capable of representing any filesystem's general features and
behavior.

For example, consider a user-space program that invokes
write(f, &buf, len);

This call writes len bytes pointed to by &buf into the current position in the file
represented by the file descriptor f. This system call is first handled by a generic
sys_write() system call service routine that determines the actual file writing method for
the filesystem on which f resides. The generic write system call then invokes this method,
which is part of the filesystem implementation, to write data into the media. Figure 4.2
(redrawn from Love [6]) below shows the control flow.

 User-space VFS filesystem physical
 medium

Figure 4.2: Control flow through VFS

VFS Objects

The VFS is object-oriented. A family of data structures represents the common file model.
Similar to objects in an object-oriented language, the structures contain both data and
pointers to filesystem-implemented functions that operate on the data. The rlink
implementation involves manipulating many of these data structures.

The Superblock Object

The superblock object is implemented by each filesystem and is used to store information
describing that specific filesystem. The object is represented by struct super_block.

The superblock structure contains a field s_op of type struct super_operations which
holds a table of super block operations. Each item in the s_op structure is a pointer to a
function that operates on a superblock object.

A complete listing of the table is provided in Appendix B.

6

sys_write()
File system's
write methodwrite()

www.manaraa.com

The Inode Object

The inode object represents all the information needed by the kernel to manipulate a file or
directory. The inode object is represented by struct inode. The complete definition of
struct inode is provided in Appendix B.

The inode structure contains an inode operations field i_op, of type struct
inode_operations, which holds a table of pointers to functions implemented by a
filesystem. These functions are invoked by VFS on an inode. When a filesystem needs to
perform an operation on an inode of its file, it follows the pointers from the file's inode
object to the desired method. For example if a filesystem wants to truncate a file, it
invokes the method as follows:

i->i_op->truncate(i)

where i is a pointer to an inode. In this case, the truncate() operation defined by the
filesystem on which i exists is called on the given inode. The definition of the
inode_operations structure is provided in Appendix B.

The dentry object

The dentry object represents a directory entry, a single component of a path. For example,
in the path /bin/vi, vi, bin and / are all represented by dentries. Dentry objects are all
components of a path, not differentiating between files and directories. Dentries help in
resolving a path. Unlike inode and superblock objects, the dentry object does not
correspond to any on-disk structure; VFS creates dentries on the fly. To speed up the
lookup process, previously created dentries are cached in the dentry cache. The dentry
structure and its dentry operations table are given in Appendix B.

The file object

The file object represents an open file as associated with a process. A file object exists for
each file opened by a process. The object is created in response to the open() system call
and destroyed in response to the close() system call. The object stores the interaction
between the process and a file. It stores information like access mode and current offset.
Whereas a file has unique inode and dentry objects in the memory, it can have many file
objects. The definitions of the file object and its associated operations table are provided in
Appendix B.

The operations objects for these primary VFS objects are implemented as a structure of
pointers to functions that operate on the parent object. For many methods, the objects can
inherit a generic function when the basic functionality is sufficient. Otherwise, the specific
instance of the particular filesystem fills in the pointers with its own filesystem-specific
methods.

7

www.manaraa.com

VFS Objects associated with filesystem

VFS keeps track of all filesystem types whose code is currently included in the kernel by
performing filesystem type registration. Filesystems are registered during system
initialization and also when a module implementing a filesystem is loaded. Each registered
filesystem is represented as a file_system_type object (whose definition is provided in
Appendix B). This structure provides information that helps VFS read the superblock of a
filesystem into the VFS superblock object when an instance of the filesystem type is
mounted. This information is subsequently used in creating other VFS objects like inode
and file.

When a filesystem is mounted, a vfsmount structure is created. This structure represents
the specific instance of a filesystem. This structure contains information about the mount
point, such as its location, mount flags and the relationship between the filesystem and
other mounted filesystems. The definition of vfsmount structure is provided in Appendix
B.

4.3 Buffer cache

The smallest addressable unit on a block device is called a sector. The smallest addressable
unit of the filesystem is called a block. The block is a software abstraction of the
filesystem; filesystems can only be accessed in multiples of blocks. Because the device's
smallest addressable unit is a sector, the block size must be a multiple of the sector size.
Furthermore, the kernel requires that a block be no larger than the memory's page size.
Common block sizes are 512 bytes, 1 KB and 4 KB.

When a block is stored in memory, it is stored in a buffer. Each buffer is associated with
exactly one block. In order to maintain control information about the data in buffer such as
the device identifier and block number, the kernel associates each buffer with a descriptor,
called the buffer head (struct buffer_head). The buffer head holds all the information
the kernel needs to manipulate the buffer. The buffer head structure is defined in Appendix
B.

4.4 Page I/O and block I/O

The rlink implementation involves both block I/O and page I/O. As explained later in
section 6.2.2, block I/O operations are used to read and write rlink blocks to disk, whereas
page I/O operations are used to read and write a file's directory-entry page.

Block I/O operations

Block I/O operations transfer a single block of data in to a single buffer. The buffer is
associated with a specific block, which is identified by the major and minor numbers of the
block device and by the logical block number.

8

www.manaraa.com

Block I/O operations are used when kernel reads or writes single blocks in a filesystem,
like a block containing an inode or a superblock.

For reasons of efficiency, buffers are stored in special pages called buffer pages instead of
as independent memory objects. All the buffers in a buffer page have the same size, and
they must be adjacent disk blocks.

Block devices transfer information one block at a time, while process address spaces (i.e.,
memory regions allocated to the process) are defined as sets of pages. This mismatch is
hidden by page I/O operations.

Page I/O operations

Page I/O operations transfer as many blocks of data as needed to fill a single page frame
(the exact number depends both on the block size and on the page frame size). Each page
frame contains data belonging to a file. Because the data is not necessarily in adjacent disk
blocks, it is identified by the file's inode and by an offset within the file. Page I/O
operations are used mainly for reading and writing files.

Both kinds of I/O operations rely on the same functions to access a block device (because
the requests need to go through the block device driver), but the kernel uses different
algorithms and buffering techniques with them.

4.5 Kernel Synchronization

Data shared by multiple processes needs to be protected against race conditions. Many
shared kernel data structures like dentry objects, mount structures and memory pages are
accessed during the rlink operations. The kernel provides the following primitive
operations to synchronize access to such data:

Atomic operations on atomic_t variables increment, decrement, and test the 24-bit
atomic_t type counter variables atomically.

Atomic bit operations test and change state of a bit atomically.
Spin locks synchronize access to a data structure in a multiprocessor environment.

Control paths waiting on a spin lock 'spin', repeatedly executing a tight instruction loop.
Semaphores allow the waiting processes to sleep, unlike spin locks.
The Big Kernel Lock (BKL) allows only process to be executing in the system.

This lock is specially designed for multiprocessor environments.

9

www.manaraa.com

4.6 The Ext2 Filesystem

Ext2 is Linux's native and the most used filesystem type. This thesis adds rlink
functionality to Ext2 and calls the new filesystem type RelExt2. In order to understand
how rlinks are implemented in RelExt2, it is necessary to understand Ext2's storage
structure.

To differentiate the filesystem type from a filesystem of that type, in this section I use Ext2
to mean the filesystem type and partition to mean an instance of a filesystem type.

Ext2 Disk Data Structures

Except the first block, which is a boot block used for system startup, the rest of the Ext2
partition is split into block groups, each of which has a layout shown in Figure 4.3 (taken
from [5], Copyright © 2002 O'Reilly Media, Inc. All rights reserved. Used with
permission).

Figure 4.3: Layout of an Ext2 partition

Each block in a block group contains one of the following pieces of information:
● A copy of the filesystem's superblock
● A copy of all block group descriptors
● A data-block bitmap
● A group of inodes
● An inode bitmap
● A chunk of data that belongs to a file, that is, a data block

The superblock contains information pertaining to the entire partition, like the number of
inodes and the number of blocks. The complete definition of the Ext2 superblock structure
is given in Appendix B. Similarly, a group descriptor stores information pertaining to the
block group like the number of free blocks in the group and the number of free inodes in
the group. A data-block bitmap is a sequence of bits, where a value of 1 indicates that the
corresponding data block is in use, and a value of 0 indicates that the corresponding data
block is free.

10

www.manaraa.com

The inode region that follows the data-block bitmap consists of several blocks, each
containing a fixed number of inodes. Each inode structure is of 128 bytes. An inode-bitmap
block stores a bitmap indicating the free and allocated inodes in the group.

The rest of the blocks in the block group are data blocks storing data belonging to files.

Ext2 Directories

Ext2's directories are special files that store filenames together with the corresponding
inode numbers. Such files contain structures of type ext2_dir_entry_2. The fields of the
structure are shown below.

struct ext2_dir_entry_2 {
 __u32 inode; /* Inode number */
 __u16 rec_len; /* Directory entry length */
 __u8 name_len; /* Name length */
 __u8 file_type; /* File type */
 char name[EXT2_NAME_LEN]; /* File name */
};

The inode field stores the inode number of the file specified by the directory entry. The
name field, which stores the final component of a file's path, is a variable length array of up
to EXT2_NAME_LEN characters. The name_len field stores the length of the string stored in
name. The file_type field stores an integer value that indicates the file type of the entry.12

The rec_len field stores the length of the directory entry. The value in this field can be
added to the address of the directory entry to obtain the starting address of the next
directory entry. An example of a Ext2 directory is shown in Figure 4.4 (taken from [5],
Copyright © 2002 O'Reilly Media, Inc. All rights reserved. Used with permission).

Figure 4.4: An example Ext2 directory

11

www.manaraa.com

5. Relative Links (rlinks)

Introduction

This thesis introduces rlinks into the Linux kernel. An rlink is a labeled directed link from
one file to another. The head of an rlink is called a from-file and the tail is called a to-file.
An rlink is illustrated in figure 5.1

 Figure 5.1: An rlink

Rlinks are based on pathnames. In Linux, a file can be addressed in two ways – its inode
number and its (path)name. Symbolic links address their targets by name. Hard links, on
the other hand, address their targets by inode. Similarly, rlinks address their targets (to-
files) by name. Although rlinks' addressing mechanism is similar to that of symbolic links,
rlinks require that their targets exist during creation, whereas symbolic links don't.

Rlinks create a directed labeled graph in which files are the vertices and rlinks are the arcs.
Because each from-file maintains a list of its to-files, in terms of graph theory, each vertex
stores the list of vertices that are adjacent to it in the graph. Thus the graph is stored in the
form of an adjacency list that is distributed among its vertices. Graph algorithms can be
applied on such a graph, as illustrated in section 7.1, where we describe a program that
computes the shortest path in the graph.

The rest of this section explains the functionality of rlinks with the help of three primary
rlink operations. Section 6.1 explains the system calls underlying these operations, which
applications use for manipulating rlinks.

An rlink can be created with a command such as the following:

rlink <from-file> <to-file> <relation-name>

This command creates an rlink of name relation-name with from-file as its head and
to-file as its tail.

The semantics for creating rlinks are

● The from-file and to-file must belong to the same file system (i.e., partition).
However, this limitation can be overcome by creating a symbolic link in the desired
filesystem pointing to the file stored on a different filesystem and creating rlinks
using this symbolic-link file.

● Multiple rlinks with the same relation-name between the same two files are not
allowed. However, one can create multiple rlinks between two files using a
different relation-name. Such links make the graph a multigraph.

12

From-file To-fileRelation name

www.manaraa.com

● When symbolic-link files are given as input files, the rlink command creates
rlinks between the symbolic-link files rather than the targets of the symbolic-link
files.

Rlinks of a file can be read from command line with a command such as the following

readrlink filename [relation-name]

readrlink prints rlinks in which filename is the from-file. If a relation-name is
specified, rlinks of only that relation type are returned; otherwise, all relation types along
with their to-files are returned.

An example of readrlink output is shown below:

readrlink casino.avi
 scorsese:
 /mnt/gsfs/movies/goodfellas.avi
 /mnt/gsfs/movies/raging_bull.avi
 /mnt/gsfs/movies/taxi_driver.avi
 /mnt/gsfs/movies/Gangs_of_New_York.avi
 deniro:
 /mnt/gsfs/movies/taxi_driver.avi
 /mnt/gsfs/movies/goodfellas.avi
 /mnt/gsfs/movies/raging_bull.avi
 joepesci:
 /mnt/gsfs/movies/raging_bull.avi

In the above readrlink output, scorsese, deniro and joepesci are relation-names,
and the files listed below each of these names are the to-files of casino.avi.

Rlinks of a file can be deleted with a command such as the following:

unrlink from-file [to-file [relation-name]]

unrlink deletes an rlink from from-file to to-file of type relation-name when all
three values are given. Both to-file and relation-name are optional. When relation-
name is not specified, unrlink deletes all relations from from-file to to-file. When
neither relation-name nor to-file are specified, it deletes all rlinks of from-file.

The semantics of unrlink are

● If a to-file does not exist (that is, the rlink is “broken”), the user must have execute
permission on all the existing ancestors of the to-file in the to-file's path. For
example, if a to-file is missing but its parent directory exists, the user may delete
the rlink only if the user has execute permission on all the components of to-file's
absolute path until the to-file's parent directory. These semantics ensure that the to-
file would have been accessible to the user if it existed. However, the path
specified for the missing to-file must not contain any broken symbolic links other
than the to-file.

13

www.manaraa.com

Characteristics of rlinks

● Because rlinks join files on same partition, the links persist even when the partition
is unmounted and mounted on another system, or when the partition is mounted at a
different mount point on the same system.

● Rlink semantics lie between that of symbolic links and hard links on a strictness
spectrum. Symbolic links do not care if the file they are pointing to exists or if the
user creating them has any permission on the target file. In contrast, the semantics
of rlinks require that to-file be not only reachable but also readable to the user. Hard
links require that the target file be reachable and be on the same partition and the
same mount point as the new file, whereas rlinks are more lenient in that they
require the to-file's path be from any of multiple simultaneous mounts of the
partition. Rlinks do not restrict deletion of the to-file, whereas the presence of at
least one hard link prevents a file from being deleted.

● The number of rlinks from the same from-file depends on the individual file system
implementation. RelExt2 allocates one block of the filesystem to store rlink
information belonging to a from-file. The size of the block is the only constraint on
the number of rlinks that can be created for a file. Typical block sizes are 1KB,
2KB and 4KB.

6. Implementation of Rlinks

6.1 System calls

This thesis introduces three system calls to enable rlink operations:: rlink(),
readrlink() and unrlink().

Rlink:

#include <rlink.h>
int rlink(const char *from_file, const char *to_file, const char
*relation);

The rlink() system call creates an rlink from from_file to to_file of relation-name
relation. From_file and to_file are respectively null-terminated pathnames of the from-
file and the to-file of the rlink. Relation is a null-terminated unicode string that defines the
relationship. The maximum length of a relation string is 255.

The process must have read permission on both the files. In addition, a process must have
write permission on the from_file's parent directory. Appendix A presents a detailed
discussion of permission issues.

On success, rlink() returns zero. On failure, rlink() returns -1 and sets errno appropriately.

14

www.manaraa.com

Errors:
● ENOENT -- Either from_file or to_file does not exist.
● EXDEV – From_file and to_file do not belong to the same filesystem.
● EACCES – The process does not have the necessary permissions.
● ENOSYS – The system call is not implemented by the filesystem to which the

from_file belongs.
● EEXIST – The rlink already exists.
● ENOSPC – There is inadequate space on the filesystem for this link.

Readrlink:
#include "rlink.h"
int readrlink(const char *from_file, const char *rel, char *buf,

size_t *bufsize, char *mntdir, size_t *mntdir_size)

From_file is the file whose rlink information is being read. Rel is a null-terminated
relation-name string. Buf is the buffer used to store output rlink information. Bufsize
indicates the size of input buffer, buf, and on return from the call indicates the size of the
data in buf.

On return from the system call, mntdir contains the mount directory of the from_file's
filesystem. mntdir_size holds the size of the buffer mntdir; on return from the call it
holds the size of the pathname in mntdir. This pathname is necessary because the to-file
paths returned in buf are filesystem-absolute paths with respect to the from-file's
filesystem. If mntdir is NULL or the value of integer at mntdir_size is zero, the mount
directory is not computed; the contents of mntdir and mntdir_size remain unchanged.

If the parameter rel is NULL, then readrlink() returns the files corresponding to all the
relations of from_file; otherwise, it only returns the files corresponding to the relation
type mentioned in rel.

The process must have read and execute permission on the from_file's parent directory.

On successful return, buf contains one record for each relation-type returned. Each record
is of type struct rlink_blk_entry, which is defined as follows:

struct rlink_blk_entry {
unsigned short reclen; //length in bytes of the relation entry
char relstr[0]; // a string containing both relation-name and the

set of to-files
}

The field relstr contains the address of the null-terminated relation name string. After the
relation name, the rest of the record contains a list of to-files delimited by null. Reclen
contains the length of the entire record, including its own length (two bytes usually). When
multiple relations are returned by readrlink(), reclen gives the offset of the next
relation record from the beginning of current record.

15

www.manaraa.com

When no rlinks matching the input criteria exist, readrlink sets bufsize zero, places a null
string in buf, and returns zero (success). If the input bufsize is smaller than the size of
the output rlink data, readrlink() fills the buffer buf with bufsize bytes and returns zero.

On success, readrlink() returns zero. On failure, readrlink() returns -1 and sets errno
appropriately.

Errors:
● ENOENT – from_file does not exist.
● EACCES – The process does not have the necessary access permissions.
● ENOSYS – The system call is not implemented by the filesystem to which the

from_file belongs.
● ENOMEM – There is not enough memory to perform this operation.
● ENAMETOOLONG – The length of the buffer given to store the mount directory's

pathname (mntdir_size) is too short.

Unrlink:
#include "rlink.h"
int unrlink(const char *from_file, const char *to_file, const char

*relation);

The system call unrlink() deletes an rlink of relation type from from_file to to_file.
Both from_file and to_file are null-terminated strings indicating paths to the files.
Relation is a null-terminated string of maximum length 255.

If no relation-name is specified, that is, when relation is NULL, unrlink() deletes all
rlinks from from_file to to_file. Similarly, if to_file is NULL, it deletes the relation
along with all its to-files. In this case, when the to_file is NULL, it is not necessary to have
the required permissions on the to-files being deleted. If both to_file and relation are
NULL, it deletes the entire rlink information of from_file.

On success , unrlink() returns zero. On failure, unrlink() returns -1 and sets errno
appropriately.

To perform unrlink(), the process must have write and execute permission on the
from_file's parent directory, read permission on the from_file, and read permission on
to_file. These permission rules are identical to those of the rlink() system call.

Errors:
● ENOENT – from_file does not exist; if to_file and/or relation is not null, no

rlink defined for the given to_file and/or relation exists.
● EXDEV – From_file and to_file (or its deepest existing ancestor) do not belong

to the same filesystem.
● EACCES – The process does not have necessary permissions.
● ENOSYS – The system call is not implemented by the filesystem to which

from_file belongs.
Appendix B presents a detailed discussion of the permissions required to successfully
perform these operations.

16

www.manaraa.com

6.2 Implementation design

I implemented rlinks in a three-layer framework. The first layer is the VFS layer, to which
the control arrives immediately after an application invokes an rlink-related system call.
This layer performs tasks like checking the validity of system-call parameters and
permissions of files. For the rest of the tasks, the VFS layer invokes the methods of the
second layer, the RelExt2 layer. RelExt2 is Ext2 with the additional rlink functionality.
This layer understands RelExt2 filesystem's data structures. Therefore, it performs tasks
that manipulate these data structures, like allocating a disk block (to store rlink
information) and retrieving data from such a block. Although the RelExt2 layer
understands the filesystem's data structures, it does not understand the storage format of
data inside an rlink block. A third layer, the rlink-block layer, manipulates the data inside
an rlink block. The following sections explain the functionalities of the three layers in
greater detail.

This layered framework provides flexibility and modularity to the software. The first pair
of layered modules – VFS and RelExt2 – is already present in the design of Linux kernel.
This modularization helps Linux access filesystems of many different types, as discussed in
Section 4.2. The second pair of modules – RelExt2 and rlink-block – detaches rlink block's
storage format from the functionality of RelExt2. Owing to this modularization, the
RelExt2 code remains the same even if the rlink-block format changes. Conversely, any
other filesystem type can use the rlink-block layer implementation to implement rlinks if it
uses the same interface to the layer. This modularization also aids in development and
maintenance of the kernel because one can modify and test each of the modules
independently.

6.2.1 VFS Layer

As mentioned in section 4.2, the VFS layer handles filesystem-related system calls. This
project adds three service routines in the VFS layer, sys_rlink(), sys_readrlink() and
sys_unrlink(), to handle the system calls rlink, readrlink and unrlink respectively.

The three VFS-layer service routines check for the existence of from-file and for
appropriate permissions on the from-file and its parent directory. The service routines also
translate input paths to the VFS objects required to invoke respective inode operations.
sys_rlink() and sys_unrlink(), which receive the to-file path, also check if both the
input files belong to the same filesystem. After performing all the tasks at this layer, the
routines invoke the filesystem's methods to accomplish filesystem-specific tasks.

The interface to filesystem's methods is provided through inode operations of the
filesystem's inodes. Three new inode operations are added to VFS's inode operations table,
as shown below:

17

www.manaraa.com

struct inode_operations {
...
int (*rlink) (struct inode *parent_dir, struct dentry *d_from, struct

nameidata *nd_tofile, const char *relation_name);
int (*readrlink) (struct inode *parent_dir, struct dentry *d_from, const

char *relation_name, char *relbuf, size_t *bufsize);
int (*unrlink) (struct inode *parent_dir, struct dentry *d_from, struct

nameidata *nd_tofile, const char *relation_name);
};

To enable rlinks, a filesystem must define the methods corresponding to these three inode
operations and connect them to the VFS inode operations table for files belonging to that
filesystem. The connection occurs when the kernel creates a VFS inode for a file of the
filesystem; it places the addresses of the corresponding filesystem's methods in the inode
operations table of the inodes. If a filesystem does not define (and connect) methods for
these inode operations, system call service routines return with error code -ENOSYS
(“Function not implemented”). Section 6.3 details the functionality of each of the three
service routines.

6.2.2 RelExt2 Layer

The RelExt2 filesystem is based on the Ext2 filesystem. In order to store rlinks, RelExt2
has a slightly different storage structure from Ext2. . I chose Ext2 as an example of a
filesystem for implementing rlinks because it is Linux's native and the most frequently used
filesystem.

Section 4.6 shows Ext2's directory entry structure, ext2_dir_entry_2. RelExt2 has a
slightly different directory entry structure:

struct gsfs_dir_entry_2 {
 __u32 inode; /* Inode number */
 __u16 rec_len; /* Directory entry length */
 __u8 name_len; /* Name length */
 __u8 file_type;
 __u32 rlink_blk; /* Number of block storing rlink info*/
 char name[EXT2_NAME_LEN]; /* File name */
};

An additional field, rlink_blk, appears between file_type and name. The field
rlink_blk stores the logical block number of the block containing rlink information of the
from-file to which the directory entry belongs.

According to this storage structure, a from-file's rlink information is stored in its directory
entry (which is always present in the parent directory's file). Consequently, if a from-file
has more than one directory entry (which happens if a file has hard links), each of those
entries has its own rlink block.

The rlink() system call verifies the value in rlink_blk field of from-file's directory
entry. A value of zero means the from-file does not have an rlink block (RelExt2 initializes
rlink_blk to zero whenever it creates a new directory entry); RelExt2 allocates a new disk

18

www.manaraa.com

block in proximity to the directory's data blocks and writes the logical block number of that
block in the rlink_blk field. If the value is not zero, it reads the block corresponding to
the value to memory and manipulates it there.When reading or deleting rlink(s) of a from-
file, RelExt2 uses the value in the rlink_blk field in the from-file's directory entry to read
its rlink block from the disk.

RelExt2 frees an allocated rlink block only when the from-file is deleted. Renaming a file,
which creates a new directory entry for the file, retains the file's rlink_blk value .

RelExt2 translates the to-file's path to its filesystem-absolute path. A filesystem-absolute
path of a file is the path of the file with respect to the filesystem's root directory (instead of
the system's root directory). This filesystem-absolute path represents the to-file inside an
rlink block. Storing filesystem-absolute paths makes rlinks mount-point independent. The
to-file names of rlinks remain valid even if the filesystem is mounted at a different mount
point or on a different system, because RelExt2 can always derive the complete path by
concatenating the filesystem-absolute path with the latest mount-directory path.

RelExt2 adds three new methods to Ext2: gsfs_rlink(), gsfs_readrlink() and
gsfs_unrlink().
int gsfs_rlink(struct inode *dir, struct dentry *d_fromfile,
 struct nameidata *nd_tofile, const char *rel_name);
int gsfs_readrlink(struct inode *dir, struct dentry *d_fromfile,
 const char *rel, char *buf, size_t *size)
int gsfs_unrlink(struct inode *dir, struct dentry *d_fromfile,
 struct nameidata *nd_tofile, const char *rel_name)

When a RelExt2 filesystem is mounted, the kernel assigns the addresses of these three
methods to the rlink(), readrlink() and unrlink() inode operations of VFS inode
objects respectively of files belonging to the RelExt2 filesystem. The first parameter of all
the three methods is the inode of the from-file's parent directory. Therefore, these methods
are defined only for VFS's directory inode objects. Section 6.2.4 details these methods.

RelExt2 layer does not know the format of data storage inside an rlink block. It uses the
interface provided by the rlink-block layer to manipulate the data inside an rlink block.
Section 6.2.3 explains the rlink-block layer.

Reading and writing rlink blocks

The RelExt2 layer performs block I/O (see section 4.4) operations when reading or writing
rlink blocks. The function ext2_alloc_block() allocates a new block when RelExt2
creates rlinks for the first time for a from-file. This function returns the logical block
number of a free block. The function sb_getblk() creates a buffer and the associated
buffer head for the new block. The function sb_bread() reads a block containing rlink
data to a buffer.

If any change occurs to data in the buffer (which happens during rlink and unrlink) that
needs to be written to the disk, RelExt2 marks the buffer as dirty. It then adds the buffer to
the list of dirty data buffers belonging to the from-file's parent directory's inode.

19

www.manaraa.com

Synchronization

Rlink block synchronization

Before RelExt2 accesses the data contained in an rlink block's buffer it must obtain a lock
on the buffer. It does so by invoking lock_buffer(), passing as a parameter the address of
buffer's associated buffer head. Lock_buffer() uses atomic bit operations to set the
BH_Lock flag in the buffer head's b_state field. The kernel places the processes waiting
on this lock in the b_wait queue in the buffer head structure and puts them to sleep. Upon
completion of a read or write operation, the process that acquired the lock releases the lock
on the buffer by invoking unlock_buffer(), passing to it the address of the buffer head
of the buffer.

This synchronization is necessary to prevent multiple processes from simultaneously
executing the critical regions. The critical regions for rlink operations are the rlink-block
layer functions. The resource shared by the processes is the buffer representing an rlink
block. Synchronization ensures that no two processes simultaneously execute an rlink-
block layer function on the same buffer.

Rlink block number synchronization

Another data structure requiring synchronization is the directory file's page that contains
the from-file's directory entry; multiple processes could simultaneously try to access the
rlink_blk field of the entry. The value in this field is changes only once in the lifetime of
the entry – when a file's first rlink is created.

To illustrate race conditions occurring on rlink_blk field, consider two processes
simultaneously attempting to create the first rlink of a file. Without any synchronization,
they both read the rlink_blk value in the file's directory entry as zero. Then they
independently allocate blocks and write each block number in this field. Only one of the
two block numbers is written. The data written in the other block is lost and the block itself
is left dangling, because its block number is not accessible anywhere to free it.

To avoid this race condition, before reading the rlink_blk field of a file's directory entry
is read, RelExt2 must acquire an exclusive lock on the page containing the entry. If the
value in rlink_blk is non-zero, meaning an rlink block already exists, the kernel releases
the lock on the page and proceeds with other operations on the block. Otherwise, if the
value is zero, the process releases the lock only after assigning a new value to the
rlink_blk field. With this synchronization in place, two (or more) processes
simultaneously trying to create the first rlink attempt to acquire a lock on the page;only one
of them succeeds, finds that rlink_blk value is zero, proceeds to allocate an rlink block
and writes the block number in the field. It then releases the lock. Then the second process
reads the rlink_blk field and finds it to be non-zero. It proceeds to read the block and
perform operations on it. RelExt2 layer synchronizes the access to data inside the block by
a buffer lock.

20

www.manaraa.com

6.2.3 Rlink block layer

An rlink block is a RelExt2 filesystem block allocated to store a from-file's rlink
information. The rlink block layer handles all manipulation of data inside an rlink block.
This layer provides an interface to the RelExt2 layer consisting of the following four
functions.

int reset_rlink_blk(char *blkbuf, unsigned short blksize)
int insert_rlink(char *blkbuf, unsigned short bufsize, const char *relname,
char *tofile)
int read_rlink_blk(char *blkbuf, const char *rel, char *buf, int bufsize)
int delete_rlink_blk(char *blkbuf, char *tofile, char* relname)

All the three functions accept as parameters the address of the beginning of buffer
representing an rlink block,its size, and task-specific parameters. Because these functions
always manipulate a buffer whose address and size are given as input parameters, the rlink-
block layer is independent of varying disk-block sizes.

Structure of an rlink block

An rlink block has a header and a list of relation entries. The header of a rlink block is of
type struct rlink_blk_header, which is defined as follows:

struct rlink_blk_header {
__u16 free_space; //offset to beginning of free-space area
__u16 reserved[2];

}

The field free_space stores the offset inside an rlink block where the free space starts.
Four bytes following this field are reserved for future use.

The rlink block header is followed by a set of relation entries. Each relation entry consists
of a relation-name followed by a set of to-files that are linked by that relation-name to the
from-file. The structure of a relation entry is defined as follows:
struct rlink_blk_entry {

__u16 reclen; //length of relation entry
char relstr[0]; // a string containing both relation-name and

// the set of to-files
}

The field relstr stores a null-terminated relation-name followed by a set of to-file names,
each of which is delimited by a null character. The field reclen stores the length of the
entire relation entry, which includes two bytes of reclen, the length of relation-name and
that of all the to-files. Every relation entry starts at a even address. If the value of reclen is
odd, the relation entry is null-padded so that the next relation entry starts at a even address.
Reading the two-byte integer field reclen from a even address is more efficient than
reading it from an odd address. As a result, an odd value in the reclen field indicates that
the last to-file of the relation entry has an additional null character. The storage structure of
relation entries inside a rlink block is illustrated in Figure 6.1.

21

www.manaraa.com

Header reclen1 relation-name1 to-file1 to-file2 to-file3

reclen2 relation-name2 to-file1 reclen3 relation-name3 to-file

free-space area
Figure 6.1: Layout of an rlink block

The storage format of rlink block data is designed to pack as much information as possible
because there is only one block to store all the rlink data of a from-file. This format
conserves space by placing a relation-name and all its to-files together. If the to-files were
instead scattered at different places in the block, an integer value of two bytes would have
been required to point to each to-file.

Maintaining this storage format requires lot of shuffling of data during rlink insertion and
deletion operations. But because a block is read at once into memory, only one I/O is
required for any operation. Due to the speed in processor and memory technologies, the
cost of operations on a memory buffer is negligible.

Insert, delete, resize relation entries

When the rlink layer creates a new rlink for a from-file, the relation-name of the rlink
might already exist in the rlink block. If so, the rlink layer appends the new to-file at the
end of the relation-name's entry (and updates its reclen field)Otherwise the rlink layer
creates a new relation entry for the relation-name. In both cases, the relation entry is
placed at the beginning of the free space area inside the block. When modifying an existing
relation entry, the rlink layer removes the relation entry from its place by moving entries
following it to the begininning of the relation entry, overwriting it. It then places the
relation entry at the end of used area in the block. However, if the relation entry is newly
created it is simply placed at the end of used area in the block.

For example, in Figure 6.1, the rlink layer adds to-file2 to relation entry of relation-name2
by moving relation-name3 entry after relation-name1 entry. It then inserts the new relation-
name2 entry after the relation-name3 entry.

The rlink-block layer deletes a to-file in a relation entry by moving all the rlink block's data
following the to-file's name to its beginning, overwriting the to-file's name. It then updates
the Reclen of the corresponding relation entry and the value in free_space header field. If
the to-file to be deleted is the only to-file of the relation, it deletes the entire relation entry
by moving the data following the relation entry to the beginning of the relation entry,
overwriting it. It then updates the free space value accordingly. For example, to delete
relation-name2 entry in Figure 6.1, the rlink-block layer moves the relation-name3 entry
after the relation-name1 entry and then sets the free_space field in the header
appropriately.

Section 6.3 has detailed description of the sequence of steps performed by rlink block
functions in accomplishing these tasks.

22

www.manaraa.com

6.3 System call algorithms

6.3.1 The rlink() system call

VFS Layer

The rlink() system call is serviced by sys_rlink() function, which receives as
parameters the path of the from-file, the path of the to-file, and the relation name. The
function returns zero on success and an appropriate negative error code on failure.
sys_rlink() performs the following operations:

1. Invokes __user_walk() passing as parameters, the from-file path, LOOKUP_PARENT
lookup flag, and the address of a local nameidata structure. This function performs
a lookup for from-file's parent directory and returns the results in the nameidata
parameter (nd_dir).

2. Invokes __user_walk() again passing the same parameters as above except the
lookup flag is LOOKUP_POSITIVE. This call returns with nameidata structure for
from-file.

3. Invokes __user_walk() as in step 2, this time passing to-file path as the
parameter.

4. Using nameidata structures of from-file (nd_from) and to-file (nd_tofile)
checks if they belong to same file system. It compares addresses of their super
blocks to do the check: nd_from.dentry->d_sb == nd_tofile.dentry->d_sb.
If they are not equal sys_rlink() returns with the error code -EXDEV.

5. Invokes permission() passing as parameter the inode of the from-file's parent
directory, and setting MAY_WRITE and MAY_EXEC bits in its flags parameter. This
function checks the inode's i_mode field with the userid of the current process
(current->fsuid) to check if the process has write and execute privileges on the
from-file's parent directory. If the check fails, with permission() returning a non-
zero value, sys_rlink returns with the error code -EPERM.

6. Invokes permission() once each for from-file and to-file passing as parameters
their inodes and the flag parameter with MAY_READ flag set.

7. If the rlink() inode operation is defined for the from-file's parent directory's
inode, invokes it passing as parameters the parent directory's inode, dentry of the
from-file, nameidata structure of the to-file and the relation name. This inode
operation reads contents of from-file's parent directory and modifies it to create the
rlink.

8. Invokes path_release() once for each of the nameidata structures obtained
above – nd_dir, nd_from and nd_tofile – to decrement the usage counter for
respective dentry and vfsmount structures.

23

www.manaraa.com

RelExt2 layer

sys_rlink() invokes gsfs_rlink() when it invokes the rlink() inode operation of a
directory file belonging to the RelExt2 filesystem. This function receives as parameters the
inode of from-file's parent directory, dentry of from-file, nameidata structure of to-file, and
a relation name. This function creates an rlink from from-file to to-file with relation name.
On success it returns zero, whereas on failure it returns an appropriate negative error code.
It performs the following tasks:

1. Invokes get_path() to obtain file-system-absolute path of to-file. The parameters
it passes are the nameidata structure of to-file, pointer to the beginning of a free
page, and size of the page. get_path() returns an address which marks beginning
of a null-terminated pathname. get_path() performs the following tasks:
a) Invokes dget() to increment its usage counter of to-file's dentry.
b) Invokes mntget() to increment usage counter of to-file's vfsmount structure.
c) Invokes dget() passing the dentry of root directory of to-file's file system. The

dentry is obtained from mnt->mnt_root field of input nameidata structure.
d) Acquires a spin lock on dentry cache using the dcache_lock global spinlock

variable.
e) Invokes __d_path() passing as parameters the dentry objects obtained in steps

a and c, vfsmount structure from b, the input page buffer parameter and the
buffer's size. __d_path uses a dentry's d_parent field to traverse from to-file's
dentry to its root dentry, while collecting intermediate path components on its
way using dentry structure's d_name field. The path returned by __d_path() is
terminated by null and stored at the end of __d_path's input buffer. The address
of the start of the path is then returned on success, null on failure.

f) Releases the spin lock acquired in step d.
g) Invokes dput() twice, passing the dentry objects obtained from steps a and c

each time, to decrement their usage counters.
h) Invokes mntput() to decrement usage counter of vfsmount structure obtained

in step b.
i) returns the value of returned from __d_path().

2. The path obtained from get_path() has a leading slash;but because the path is
always absolute, the leading slash is redundant unless it is the only component.
Therefore, except when to-file's path is root of the file system, gsfs_rlink()
removes the leading slash by incrementing path's starting address.

3. Invokes ext2_find_entry(), passing as parameters the inode of the directory, the
dentry of from-file and the address of the pointer variable to a page structure.
ext2_find_dentry() populates the pointer variable with the address of the page in
directory file that contains the from-file's entry; it returns the address of the
directory entry (of type gsfs_dir_entry_2) within the page.

4. Invokes lock_page() to acquire a lock on the page obtained in previous step (3).
5. Checks if an rlink block already exists by checking the value of the rlink_blk

field in from-file's directory entry. If this value is not zero, which means an rlink
block already exists, it goes to step 6. On the other hand if the value is zero
meaning an rlink block does not exist, it performs the following tasks.

24

www.manaraa.com

a) Invokes ext2_alloc_block() passing as parameters the directory inode, an
integer value goal and address of an integer variable to store error values. Goal
is a value Ext2 uses to allocate blocks as close as possible to the value. The
value assigned to goal here the block number of first buffer page of the
directory page obtained in step 3. On success, ext2_alloc_block returns a
non-zero number of a free block; on failure, it returns a zero.

b) Assigns the disk block number obtained above to rlink_blk field of from-file's
directory entry.

c) Invokes ext2_commit_chunk() to write the directory page containing from-
file's directory entry to disk.

d) Invokes sb_getblk(), passing as parameters the super block of the directory
and the newly obtained block number, to allocate a buffer page for the block.
sb_getblk() creates a buffer head for the buffer page and returns its address.

e) Locks the buffer page obtained in previous step (d) by invoking
lock_buffer(), passing to it the buffer head.

f) Invokes unlock_page() to unlock the directory page locked in step 4.
g) Initializes the new block by invoking the reset_rlink_blk() rlink-block layer

function, passing as parameters the address of buffer page obtained in step e and
the size of the page.

h) Unlocks the buffer page locked in step e.
i) Control goes to step 8.

6. Invokes unlock_page to unlock the directory page locked in step 4.
7. Invokes sb_bread(), passing as parameters the directory's inode and the rlink

block number contained in the from-file's directory entry, to read the rlink block
from the disk into a buffer page. sb_bread() returns the buffer head of this block's
buffer.

8. Locks the buffer (obtained either in step 7 or 5d) using the lock_buffer()
function.

9. Invokes the insert_rlink() rlink-layer function passing as parameters the buffer
page obtained previously, the size of the buffer page, the relation name and the to-
file's path obtained in step 2. Insert_rlink() updates the buffer page with the
new rlink information. It returns zero on success and an appropriate negative error
code on failure.

10.Unlocks the buffer page locked in step 7
11.Marks the buffer page as dirty using the mark_buffer_dirty() function.
12.Inserts the buffer page in the directory inode's list of dirty data buffers using

buffer_insert_inode_data_queue().
13.Releases the buffer page using __brelse().
14.Decrements the usage counter of directory's page (obtained in step 3) using

ext2_put_page().

25

www.manaraa.com

Rlink block layer

The RelExt2 layer function gsfs_rlink() invokes the rlink-block layer functions
reset_rlink_blk() and insert_rlink().

reset_rlink_blk() receives as parameters a character buffer and size of that buffer. It
assigns the free_space field of input buffer's header the length of the header indicating
that everything after the header is free for use.

Insert_rlink() receives as parameters the address of a character buffer representing an
rlink block, the size of that buffer, the relation-name string, and the path of the to-file. It
returns zero on success and a negative error code on failure. It performs the following
actions:

1. Checks if an entry for the relation-name already exists in the block buffer. If the
relation-name's entry does not exist, it performs actions in step 2; otherwise it
performs actions in step 3.

2. Creates a new record for the relation by performing the following tasks:
a) Allocates a rlink_blk_entry type buffer to temporarily store the new record

using kmalloc().
b) Estimates the length of the new record. If the block buffer does not have enough

free space to store the record, function returns the error code -ENOSPC.
c) Copies relation-name into the relstr field of the record (terminated by null).
d) Copies to-file path following the relation-name string (terminated by null).
e) Stores the length of the record in its reclen field. If the length is an odd

number, increments it by one and appends an extra null character at the end of
the record.

3. Creates a new record by updating the old one and updates the rlink block as
follows:
a) Checks if the to-file already exists. If it does, the function returns with error

code -EEXIST.
b) Estimates the additional storage required to add the new to-file path to the

existing relation record. If there is not enough free space, the function returns
with error code -ENOSPC.

c) Allocates an rlink_blk_entry type buffer to temporarily store the new record.
d) Copies the current relation entry from the block buffer in to a temporary buffer.
e) Appends the new to-file at the end of the record in the temporary buffer.
f) Updates the reclen field of the record in the temporary buffer. If the value is an

odd number, increments it by one and appends an extra null character at the end
of record.

g) Calls shuffle_blk() to move the contents in the block buffer following the
relation entry to the beginning of the relation entry, effectively overwriting it.
shuffle_blk() also updates the free_space block header field.

4. Writes the new record obtained from either step 2 or step 3 into the block buffer at
the beginning of its free space.

5. Updates free_space field of block header to include the newly appended record.
6. Frees the temporary buffer allocated in step 2a or 3c by invoking kfree().

26

www.manaraa.com

6.3.2 The readrlink() system call

VFS Layer

The readrlink() system call is serviced by the sys_readrlink() function, which
receives as parameters the from-file name, a relation-name string, a buffer to hold output
relation entries, the size of the buffer available, a buffer to hold the mount directory path
and the size of this buffer. The function returns zero on success and an appropriate negative
value on error. The function performs the following operations:

1. Invokes __user_walk() passing as parameters the from-file path, the
LOOKUP_PARENT lookup flag, and the address of a local nameidata structure. This
function performs a lookup for from-file's parent directory and returns the results in
the nameidata parameter (nd_dir).

2. Invokes __user_walk() again passing the same parameters as above except the
lookup flag is LOOKUP_POSITIVE. This call returns with nameidata structure for
from-file (nd_from).

3. Checks whether the current process has necessary privileges by invoking
permission(), passing as parameters the inode of the from-file's parent directory
and the flags parameter with MAY_WRITE and MAY_EXEC bits set. This function
checks the inode's i_mode field with the userid of the current process (current-
>fsuid) to check if the process has write and execute privileges on the from-file's
parent directory. If the check fails, with permission() returning a non-zero value,
sys_readrlink() returns with the error code -EACCES.

4. If the readrlink() inode operation is defined for the from-file's parent directory's
inode, invokes it, passing as parameters the parent directory's inode, dentry of the
from-file, the relation-name, the relation-entry buffer and the variable containing its
size. This inode operation reads the contents of the from-file's parent directory and
fills the relation-entry buffer and its size variable with relation entries and their total
size respectively. The next subsection details all the operations done by this
function in the RelExt2 filesystem. The BKL is acquired just before invoking the
readrlink() inode operation and released immediately after the function returns.

5. If the mount directory buffer is not null and the corresponding buffer size is not
zero, invokes get_mnt_path() to obtain the mount directory of from-file's
filesystem. get_mnt_path() receives as parameters the nameidata structure of the
from-file, a buffer to hold the output path and the size of this buffer.
get_mnt_path() performs the following tasks to get the path:
a) Obtains the dentry and vfsmount structures of the mount point of from-file's

filesystem through mnt->mnt_mountpoint and mnt->mnt_parent fields of the
input nameidata structure respectively.

b) Obtains the vfsmount structure of the root filesystem by looping through the
mnt_parent field of the vfsmount structures starting from the one obtained in
step a, until the value in the mnt_parent field of a vfsmount structure is the
same as the address of the structure. A spin lock is obtained on the dentry cache
(using the dcache_lock variable) just before this operation.

c) Obtains the dentry of the system's root by accessing mnt_root field of the
vfsmount structure obtained in step 5b.

27

www.manaraa.com

d) Invokes __d_path(), passing as parameters the dentry and vfsmount structures
of the mount point (obtained in step a), the root directory's dentry (step c), the
root filesystem's vfsmount structure (step b) and the buffer and buffer's size
passed to get_mnt_path() as parameters. __d_path() returns the path of the
mount point by returning an address inside the input buffer where the null-
terminated path is located.

e) Returns the return value of __d_path(). Before returning, releases the spin
lock acquired in step b and decrements all the counters on the dentry and
vfsmount structures sent to __d_path(), which were incremented before
invoking __d_path().

6. Copies the mount directory obtained in step 5 to the user space buffer given as input
parameter and assigns the length of the path to the buffer size parameter. If the size
is too small, returns with the error code -ENAMETOOLONG after performing step 7.

7. Invokes path_release() once for each of the nameidata structures obtained
above — nd_dir, nd_from — to decrement the usage counter for the respective
dentry and vfsmount structures.

RelExt2 Layer

The RelExt2 layer function gsfs_readrlink() handles the call to readrlink() inode
operation when the inode belongs to a RelExt2 filesystem file. The function accepts as
parameters the inode of from-file's parent directory, the dentry of from-file, the relation-
name, relation-entry buffer and the size of the relation-entry buffer. On successful return,
the relation-entry buffer contains the requested relation entries, and the size variable
contains the length of the content in the buffer. The gsfs_readrlink() function returns
zero on success and an appropriate error code on failure. The function performs the
following tasks:

1. Obtains the from-file's directory entry (of type struct gsfs_dir_entry_2) by
invoking ext2_find_entry()

2. If the directory entry's rlink_blk field is zero, which means no rlinks were ever
created for the from-file, sets the size parameter to zero and assigns null to the first
character in the buffer (indicating a zero-length string). The function returns zero.

3. If the rlink_blk field is not zero, invokes sb_bread(), passing rlink_blk value
as one of the parameters, to read the corresponding block in to a buffer.
sb_bread() returns the address of the buffer head of the buffer.

4. Invokes read_rlink_blk(), an rlink-block layer function, to read the buffer
obtained in step 3 to retrieve the requested relation entries. The parameters passed
to this function are the address of the buffer (value of b_data field of buffer head
obtained above), the size of the buffer, the relation-name whose entries we are
trying to retrieve and a buffer to hold the resultant entries. On success, the function
returns the size of the contents in the buffer; on failure, it returns a negative value
indicating an error code.

Before invoking read_rlink_blk(), locks the buffer using the
lock_buffer() function passing the buffer head as its parameter; releases the
lock immediately after the function returns.

28

www.manaraa.com

5. If the return value from step 4 is negative, sets the relation-entry buffer size to zero
and returns that negative value.

6. If the return value from step 4 is positive or zero, sets the relation-entry buffer size
value to that value and copies the relation entries to user space.

7. Releases the buffer head of the buffer by invoking __brelse() and decrements the
usage counter of the page that contained the from-file's directory entry.

Rlink-block layer

The rlink-block layer function read_rlink_blk() is invoked by gsfs_readrlink() (step
4 above) to read the contents of the buffer corresponding to a rlink block to retrieve the
requested relation entries. The parameters passed to the function are a character buffer
representing an rlink block, the relation-name whose to-files are requested, a buffer to hold
the output relation entries, and the size of this buffer. read_rlink_blk() performs the
following tasks:

1. If the input relation-name parameter is not null,
a) Invokes rel_name_exists() to check if an entry for the relation-name exists

in the block. If an entry exists, rel_name_exists() returns the address inside
the block where the relation-name's entry begins. The function starts from the
relation entry following the block's header and iterates through the relation
entries in the block using each entry's reclen field. During each iteration it
checks the relstr field of an entry for a match with the input relation-name;
when a match occurs, it returns the address of the entry; otherwise, it returns
NULL.

b) If rel_name_exists() returns NULL, sets the first character of the relation-
entry buffer to null and returns zero; otherwise, copies the relation entry into the
buffer using the return value and returns the length of the relation entry.

2. If the input relation-name is null, iterates through the relation entries, copying each
of them into the input buffer. Each relation entry is of type struct
rlink_blk_entry (see section 6.2.3 for its definition). It copies the consecutive
relation entries into the buffer in the same format as they are stored in the block
(see section 6.2.3), except without padding at the end of relation entries. The
function then returns the combined size of all the relation entries.

29

www.manaraa.com

6.3.3 The unrlink() system call

VFS layer
The unrlink() system call is serviced by the VFS layer function sys_unrlink(), which
receives as parameters the path of the from-file, the path of the to-file and a relation-name
string. The function returns zero on success and an appropriate negative error code on
failure. sys_unrlink() performs the following tasks:

1. If the relation-name parameter is not NULL, invokes copy_from_user() to copy the
relation-name string from user space into a kernel-space variable.

2. Invokes __user_walk() passing as parameters the from-file path, LOOKUP_PARENT
lookup flag, and the address of a local nameidata structure. This function performs
a lookup for from-file's parent directory and returns the results in the nameidata
parameter.

3. Invokes __user_walk() again passing the same parameters as above, except the
lookup flag is LOOKUP_POSITIVE. This call fills the nameidata structure's fields
with from-file's information.

4. Checks if the process that invoked the unrlink() system call has the required
permissions on the from-file and its parent directory (see Appendix A for a
discussion of the permission semantics). It does so by invoking permission()
once each for the from-file and its parent directory passing each time their
respective inodes and the permission flags.

5. If the input to-file parameter is NULL(which means the process wants to delete rlinks
irrespective of the to-file) assigns LAST_NO_FILE (defined as -1) to the to-file's
nameidata structure's last_type field.

6. If the input to-file parameter is not NULL, invokes to_file_lookup() passing as
parameters the to-file (which it copies to a kernel-space variable using getname()
before this invocation) and the address of a local nameidata structure. The function
to_file_lookup() performs the following tasks:
a) Invokes path_lookup() passing as parameters the to-file path, the

LOOKUP_POSITIVE flag and the nameidata structure received as parameter. This
function fills the dentry field of the nameidata structure and returns zero
indicating success if the to-file exists. If the to-file does not exist or any other
failure occurs, the function returns a negative number indicating the type of
failure.

b) If the path_lookup() invocation in the previous step returns a negative value
not equal to -ENOENT, returns the value to the caller.

c) If the invocation in step 6a returns successfully and the returned nameidata
structure contains a valid inode (of the to-file), checks if the process has the
required permissions on the to-file by invoking permission().

d) If the return value from the invocation in step 6a is -ENOENT, iterates through
the components of to-file's path until an existing ancestor of the to-file is found.
On each iteration it removes the current last component of the path, using
chop_last_component(), and checks for the existence of the resulting
filename (which is always a directory, because it was an inner component of the
to-file path before the last component was chopped) by invoking
path_lookup(). When it finds such a file, checks if the process has the

30

www.manaraa.com

required permissions (MAY_EXEC) on the file by invoking permission(). While
iterating it stores the chopped components of the to-file's path in the nameidata
structure's last.name field.

7. If the to_file_lookup() invocation in step 6 returns an error, releases the dentry
and nameidata structures obtained in steps 2 and 3 and returns the error.

8. If the to_file_lookup() invocation in step 6 returns successfully, checks if the
inode returned by the function belongs to the same filesystem as the from-file. If
this check fails, releases the structures obtained in steps 2, 3 and 6 and returns the
error code -EXDEV.

9. If the unrlink() inode operation is defined for the from-file's parent directory's
inode, invokes it passing as parameters the parent directory's inode, the dentry of
the from-file, the nameidata structure of the to-file (or its ancestor returned by
to_file_lookup()) and the relation-name.

10.Releases all the structures allocated earlier and returns the return value of the
invocation in step 9.

RelExt2 Layer

The RelExt2 layer function gsfs_unrlink() executes when sys_unrlink() invokes the
unrlink() inode operation of an inode that belongs to RelExt2. gsfs_unrlink() receives
as parameters the from-file's parent directory's inode, the dentry of the from-file, the
nameidata structure of the to-file (or its ancestor) (say, nd_tofile) and the relation-name.
It performs the following tasks:

1. If the last_type field of the input nameidata structure (nd_tofile->last_type)
equals LAST_NO_FILE, assigns NULL to a local variable, tofile_path, that stores
the to-file's filesystem absolute path.

2. If the last_type field checked in step 1 is not equal to LAST_NO_FILE, performs
the following tasks to obtain the to-file's filesystem-absolute path into the local
variable, tofile_path.
a) Invokes get_path(), passing as parameters the to-file's nameidata structure

(nd_tofile), a page-size buffer and the size of the buffer, to obtain the to-file's
filesystem-absolute path (see the RelExt2 Layer section of section 6.3.1 for a
detailed description of get_path()).

b) Removes the beginning slash from the path returned by get_path(), because
every filesystem-absolute path has the starting slash, making it redundant to
store. It now matches the path stored in the rlink block.

c) Checks nd_tofile's last.name field for any chopped components of the to-
file. Appends all such components to the end of the path obtained in step 2b.

3. Invokes ext2_find_entry() passing as parameters the inode of the directory, the
dentry of from-file and the address of a pointer variable to a page structure.
ext2_find_dentry() populates the pointer variable with the address of the page in
directory file that contains the from-file's entry and returns the address of the
directory entry (of type gsfs_dir_entry_2) within the page.

4. If the rlink_blk field of the directory entry obtained in step 3 is zero, releases the
page allocated in step 3 and returns the error code -ENOENT.

31

www.manaraa.com

5. If the rlink_blk field is not zero, invokes sb_bread(), passing the rlink_blk
value as one of the parameters, to read the corresponding block in to a buffer.
sb_bread() returns the address of the buffer head of the buffer.

6. Invokes the rlink-block layer function delete_rlink_blk() passing as parameters
the buffer head obtained in step 5, the to-file's path obtained in either step 1 or 2
and the relation-name input parameter. This function compares its parameters to the
rlink block's data and deletes the matching rlinks. This invocation is surrounded by
calls to lock_buffer() and unlock_buffer(), passing the buffer head obtained in
step 5 as parameter, to prevent operations on the buffer by other processes.

7. Marks the buffer as dirty using the mark_buffer_dirty() function.
8. Inserts the buffer in the directory inode's list of dirty data buffers using

buffer_insert_inode_data_queue().
9. Releases the buffer using __brelse().
10. Decrements the usage counter of directory's page (obtained in step 3) using

ext2_put_page().

Rlink-block layer
The RelExt2 layer function gsfs_unrlink() invokes the rlink-block layer function
delete_rlink_blk(), passing as parameters the buffer head of the rlink block, the to-
file's path and the relation-name, to delete the contents of the rlink block's buffer. It
performs the following tasks:

1. If the relation-name string is of non-zero length,
a) Invokes rel_name_exists() passing as parameters the address of the buffer

and the relation-name. rel_name_exists() returns the address of the relation-
entry within the buffer if a relation-entry exists for the input relation-name.

b) If a matching relation-entry does not exist, returns the error code -ENOENT.
c) If a matching relation-entry exists and the to-file parameter is NULL,

overwrites the relation-entry with the buffer's contents following the relation-
entry, thus deleting the relation-entry. It also updates the free_space_area
header field of the buffer.

d) If the relation-entry exists and the to-file parameter is not NULL,
1. Checks if the to-file exists in the relation-entry obtained in step 1a by

invoking tofile_exists().
2. If the to-file doesn't exist, returns the error code -ENOENT.
3. If the to-file exists, invokes delete_to_file() to delete the to-file.

delete_to_file() deletes the to-file by moving the contents of the buffer
following the to-file's path to the address of the to-file's path, thus deleting
it. If the to-file was the last to-file of the relation-entry, deletes the relation-
entry by moving the contents following the entry to the beginning of the
entry. Finally, it updates the free_space_area header field accordingly.

2. If the relation-name string is of zero-length, meaning no relation-name was
specified by the process,
a) If the to-file input parameter is NULL, invokes reset_rlink_blk() (see section

6.3.1 for an explanation of reset_rlink_blk()) to delete all the rlinks in the
buffer.

32

www.manaraa.com

b) If the to-file parameter is not NULL, iterates through each relation-entry, using
the reclen field of the entry, to delete the to-file in it. During each iteration it
invokes delete_to_file() (see step 1d3) passing as parameters the buffer, the
relation-entry pertaining to that iteration, and the to-file.

7. Applications

Applications using rlinks can be classified into those that view rlinks as connecting related
files and those that view rlinks as creating a graph of the filesystem and apply graph
algorithms on the resulting graph.

7.1 Rlinks as connecting related files

ls with rlinks

ls is a Unix utility that lists directory contents. Most Linux distributions include the Free
Software Foundation's version of the implementation of this utility; the source code is
governed by GNU's General Public License(GPL) Version 2 and is distributed as part of
GNU's Coreutils package. The version of Coreutils used in this thesis is 6.7.

The complete syntax for using ls, along with a complete listing of its options, can be found
in its man page by typing ”man ls” at the command line. In this thesis, I introduce three
new options — j, y, Y — that dictate the type of rlink information printed for the listed
files. Each of these options is explained below.

j print an additional column at the beginning of a file's information, displaying “r” if
the file has at least one rlink and “­” if the file has none.
y print the relation-names associated with each file.
Y print the relation-names associated with a file, along with the to-files associated
with each relation-name. Each to-file is displayed in a separate line and is grouped under a
relation-name.

The ls output for each of the three options is illustrated below.

% ls -j
- ls r catch_me_if_you_can.avi r raging_bull.avi r
titanic.avi
r Gangs_of_New_York.avi - goodfellas.avi - taxi_driver.avi
r casino.avi r minority_report.avi r the_aviator.avi

% ls -jy
- ls r minority_report.avi
(spielberg)
r Gangs_of_New_York.avi (scorsese,dicaprio) r raging_bull.avi
(joepesci,scorsese)
r casino.avi (scorsese,deniro,joepesci) - taxi_driver.avi
r catch_me_if_you_can.avi (dicaprio,spielberg) r the_aviator.avi
(scorsese,dicaprio)
– goodfellas.avi r titanic.avi (dicaprio)

33

www.manaraa.com

% ls -Yl casino.avi
-rw-r--r-- 1 naveen users 0 2007-06-19 05:29 casino.avi
scorsese:
 --> /mnt/gsfs/movies/goodfellas.avi
 --> /mnt/gsfs/movies/raging_bull.avi
 --> /mnt/gsfs/movies/taxi_driver.avi
 --> /mnt/gsfs/movies/Gangs_of_New_York.avi
deniro:
 --> /mnt/gsfs/movies/taxi_driver.avi
 --> /mnt/gsfs/movies/goodfellas.avi
 --> /mnt/gsfs/movies/raging_bull.avi
joepesci:
 --> /mnt/gsfs/movies/raging_bull.avi

ls accepts an additional option --color to display relation-names and to-files in
distinguishing colors.

Developers can integrate rlinks into other Unix utilities like cp (copy files; see man cp) and
ln (link files; see man ln) by similarly introducing such new options. For example “cp
-y” could create rlinks (with relation-names, say, “copiedfrom” and “copiedto”) between
the files involved in copying; these links help a user in keeping track of transitions of files
in the filesystem. In the same way “ln -y” could create rlinks (with relation-names, say,
“linkfrom” and “linkto”) between the two files involved in linking. Rlinks created between
hard links keep track of hard links of a file.

Related-file search

A related-file search (rfs) program receives as input a set of files. It scans the rlink
information of these files to return files that are related to the input files in the order of their
strength of relation.

7.2 Rlinks to represent a graph

Dijkstra's shortest path algorithm

Rlinks give a graphical view of the filesystem. The dijk application illustrates applying
graph algorithms to such a view. Given two filenames, dijk finds the shortest path to reach
one file from the other applying Dijkstra's shortest path algorithm.

The distance from file A to file B is the integer equivalent of the relation-name of rlink
from file A to the file B. That is, if there exists an rlink with relation-name “5” between file
A and file B, then the distance from A to B is 5. Rlinks with non-integer-equivalent
relation-names are not considered part of the graph.

dijk starts at the first of the two input files (say, A and Z), scans its rlinks, adds the to-file
with the lowest 'cost' to the tree (implemented by a linked list), and updates the cost of to-
files that are reachable from files in the tree. In the next iteration, dijk adds the reachable
file with the lowest cost to the tree and accordingly updates the cost of other reachable
files. This process continues until the destination file (Z) is added to the tree, at which time
the cost and the minimal path are returned.

To illustrate, consider the graph in Figure 7.1.

34

www.manaraa.com

Figure 7.1: An rlink graph

Each node in the graph is a file in the filesystem; each edge is an rlink of relation-name
representing the label of the edge. The output of readrlink command of the file A, for
example, is as follows:

% readrlink A
A:
 1:
 --> /mnt/gsfs/graph/C
 2:
 --> /mnt/gsfs/graph/B

The following command displays the shortest distance from file B to file A.

% dijk B A
The minimum total cost is 5
graph/A
 ^
 | 1
graph/E
 ^
 | 1
graph/D
 ^
 | 3
graph/B
 ^
 | 0

The output shows that the shortest path from file B to file A is B → D → E → A, and
the shortest distance is 5.

35

mailto:naveen@identity
mailto:naveen@identity
mailto:naveen@identity

www.manaraa.com

8 Conclusions

In this thesis I have introduced a new type of link, rlink, to store related-file information of
a file. I defined a set of semantics for the links, made changes to Linux's VFS layer to
accommodate the new links, modified a popular filesystem, Ext2, to implement and
support rlinks. I implemented a few applications that illustrate the use of rlinks. From this
work I draw the following conclusions:

● Rlinks provide a new way to link files.

● Rlinks are effective in providing related-file information of any chosen file.

● Because related-file information is spread across the filesystem instead of in a
centralized location, rlinks are robust during storage system failures.

● Rlinks form overlay graphs between files of a filesystem, thus providing useful
alternative views of the filesystem.

● Rlinks provide a fast alternative to using a full-fledged semantic file system for
storing related-file information.

● Rlinks can be implemented in existing filesystems with only slight modifications.

9 Future Work

Several ideas arose during development that I did not implement either due to time
constraints or the lack of empirical knowledge of use of rlinks. Here is a list of some of
those ideas.

1. Write a program to convert an Ext2 filesystem to a RelExt2 filesystem. This
program would add an extra field to all the directory entries in the directory files of
the filesystem.

2. If the rlink block size is too restrictive for applications, the single block can be
replaced by a linked list of blocks connected by block numbers stored in the
currently reserved fields of each rlink block header.

3. Even achange to a filesystem as minor as adding a field to a directory entry could
be too drastic for mass adoption. Hence the existing Extended Attributes feature in
the Linux 2.6 kernel can be enhanced to store rlink attributes. The attribute name-
value pairs, for example, could be,

user.rlink.relationname: /the/related/to-file

This enhancement requires implementing the rlink semantics and resolving the
pathnames before setting and retrieving the rlink extended attributes.

4. More utilities can be added for operations like renaming a relation-name, copying
rlink information between files, and retrieving only the relation-names of a file.

36

www.manaraa.com

Appendix A: Rlink Permission semantics

While designing rlinks, we considered a few sets of permission semantics for rlinks. In this
section I describe three important sets of semantics along with advantages and
disadvantages of each of them.

Set 1:
The table A.1 shows the set of permissions required by each rlink operation on the files
involved in the operation. The permission “access” for a file means that the file should be
accessible to the user. A file is accessible to a user when the file exists and the user has
execute permission on all directories in the file’s path name. The access permission allows
an application to determine the existence of a file.

Table A.1
 Parameters
System call

From-File To-file From-file's parent
directory

Rlink Read Read Execute+Write

Readrlink Access None Execute+Read

Unrlink Read Read/Ancestor Access Execute+Write

The semantics of requiring read access on both from-file and to-file to rlink or unrlink
stems from the idea that a user should know the content of both the files in order to decide
whether a relation exists between them. The execute permission on the from-file's parent
directory ensures that the from-file is accessible.

The implementation of rlinks in this thesis stores rlink information of a file in the file's
parent directory. Hence, according to Unix's file-access semantics, the user needs write
permission on the from-file's parent directory to perform rlink or unrlink operations.
However, the rlink implementation doesn't require read permission for from-file and to-file.
It is a constraint imposed by our chosen rlink semantics in addition to Unix's file-access
semantics.

If a to-file is missing when an unrlink operation is attempted, the accessibility of the to-file
to the process, had the to-file existed, is checked. That is, to successfully perform such an
operation, the process must have execute permission on all the to-file's existing ancestors
(starting from its parent directory).

Advantages:
1. Because users creating rlinks have read access to both from-file and to-file,

rlinks when created are more meaningful than rlinks created by users who do
not have access to contents of the file.

2. Because rlinks are created between files that exist, it is possible to enforce a
constraint that both the files belong to the same filesystem. Such a constraint
ensures that the links are valid when the partition is mounted on different
systems or different directories of the same system.

37

www.manaraa.com

3. Because the existence of the to-file is checked when an rlink is created, rlinks
are more likely to be valid than rlinks that were created without such a check on
to-file (as in Set 3 below), because the to-file existed at some time in the past.

Disadvantages:
1. The semantics are not consistent. Even though the existence of both files is

checked during rlink creation, the constraint is not maintained throughout the
lifetime of rlinks.

2. The semantics are very restrictive, because they enforce more constraints than
required by Unix's file-access semantics to perform the operations.

Set 2:
Table A.2

 Parameters
System call

From-File To-file From-file parent
directory

Rlink Access Access Execute+Write

Readrlink Access None Execute+Read

Unrlink Access Access/ Ancestor Access Execute+Write

This set of semantics differs from Set 1 in that read permission on the from-file and to-file
is not required to perform rlink and unrlink operations.

Advantages:

1. Advantages 2 and 3 from Set 1.
2. Less restrictive semantics than Set 1, allowing greater freedom for users to

create and delete rlinks.

Disadvantages:
1. Disadvantage 1 of Set 1.
2. Rlinks are less meaningful than in Set 1. Even though this set of semantics

ensures the two files involved in rlink operations exist, it doesn't ensure that the
content in files is related because the user may not have read permission to
check the content.

Set 3:
Table A.3

 Parameters
System call

From-File To-file From-file parent
directory

Rlink Access None (Treated as text) Execute+Write

Readrlink Access None Execute+Read

Unrlink Access None (Treated as text) Execute+Write

38

www.manaraa.com

This set of semantics checks for the existence of the from-file for all three rlink operations
but considers the to-file name given as a string. The rlink and unrlink operations are
successful even if the to-file does not exist, or exists on a different filesystem or is not even
a valid filename. These to-file semantics are very similar to the source-filename semantics
for creating symbolic links. This set of semantics represents the minimal permission
requirements to perform rlink operations that conform with the Unix's file-access semantics
for creating rlinks.

Advantages

1. Semantics are consistent (a disadvantage of Sets 1 and 2). Rlinks are never
considered as created with valid to-files.

2. Because this set of semantics is very similar to that of familiar symbolic links,
users can easily understand and use rlinks.

3. The to-file field of an rlink can contain informative text. This information can
be shared by other users and applications.

4. Because to-files can exist on any filesystem, rlinks can be created between files
across filesystems.

Disadvantages

1. Links are less likely to be valid, that is, both components of an rlink — the
from-file and the to-file — exist, compared to Sets 1 and 2. Links are less likely
to be valid; firstly because rlinks are potentially created between files that never
existed, and secondly, if a non-root filesystem is mounted at different place than
it was when rlinks were created for its files, the entire rlink information of the
partition becomes invalid. This loss of information leads to users losing trust in
rlink information.

2. Because the to-file can be an arbitrary character string, rlinks are no longer links
between files, but are a way of storing meta-data of from-files.

For this thesis I chose to implement the semantics in Set 1, because the goal of this thesis is
to provide users with an effective mechanism to navigate through related files of a file.
Sets 2 and 3 do not enforce the relatedness of files' content. The loss of information
between mounts of a filesystem at different mount points makes Set 3 ineffective.

39

www.manaraa.com

Appendix B: Data Structures Reference

2.1 VFS Super block object

struct super_block {
 struct list_head s_list; /* Keep this first */
 kdev_t s_dev; /* Device identifier */
 unsigned long s_blocksize; /* Block size in bytes */
 unsigned char s_blocksize_bits;/* Block size in # of bits */
 unsigned char s_dirt; /* Modified (dirty) flag */
 unsigned long long s_maxbytes; /* Max file size */
 struct file_system_type *s_type; /* Filesystem type */
 struct super_operations *s_op; /* Super block methods */
 struct dquot_operations *dq_op; /* Disk quota methods */
 struct quotactl_ops *s_qcop;
 unsigned long s_flags; /* Mount flags */
 unsigned long s_magic; /* Filesystem magic number */
 struct dentry *s_root; /* Dentry of mount directory */
 struct rw_semaphore s_umount; /* Semaphore used for unmounting
*/
 struct semaphore s_lock; /* Super block semaphore */
 int s_count; /* Reference counter */
 atomic_t s_active; /* Secondary reference counter
*/
 struct list_head s_dirty; /* dirty inodes */
 struct list_head s_locked_inodes;/* inodes being synced */
 struct list_head s_files; /* List of file objects
assigned to super block */

 struct block_device *s_bdev; /* Pointer to the block device
descriptor */
 struct list_head s_instances; /* Pointers for a list of
superblock objects of a given filesystem type */
 struct quota_info s_dquot; /* Diskquota specific options
*/
 union u;
 struct semaphore s_vfs_rename_sem; /* Kludge */
 struct semaphore s_nfsd_free_path_sem;
}

struct super_operations {
 struct inode *(*alloc_inode)(struct super_block *sb);
 void (*destroy_inode)(struct inode *);
 void (*read_inode) (struct inode *);
 void (*read_inode2) (struct inode *, void *) ;
 void (*dirty_inode) (struct inode *);
 void (*write_inode) (struct inode *, int);
 void (*put_inode) (struct inode *);
 void (*delete_inode) (struct inode *);
 void (*put_super) (struct super_block *);
 void (*write_super) (struct super_block *);
 int (*sync_fs) (struct super_block *);
 void (*write_super_lockfs) (struct super_block *);
 void (*unlockfs) (struct super_block *);
 int (*statfs) (struct super_block *, struct statfs *);
 int (*remount_fs) (struct super_block *, int *, char *);
 void (*clear_inode) (struct inode *);

40

www.manaraa.com

 void (*umount_begin) (struct super_block *);
 struct dentry * (*fh_to_dentry)(struct super_block *sb, __u32 *fh, int
len, int fhtype, int parent);
 int (*dentry_to_fh)(struct dentry *, __u32 *fh, int *lenp, int
need_parent);
 int (*show_options)(struct seq_file *, struct vfsmount *);

}

VFS Inode Object

struct inode {
 struct list_head i_hash;
 struct list_head i_list;
 struct list_head i_dentry;

 struct list_head i_dirty_buffers;
 struct list_head i_dirty_data_buffers;

 unsigned long i_ino;
 atomic_t i_count;
 kdev_t i_dev;
 umode_t i_mode;
 unsigned int i_nlink;
 uid_t i_uid;
 gid_t i_gid;
 kdev_t i_rdev;
 loff_t i_size;
 time_t i_atime;
 time_t i_mtime;
 time_t i_ctime;
 unsigned int i_blkbits;
 unsigned long i_blksize;
 unsigned long i_blocks;
 unsigned long i_version;
 unsigned short i_bytes;
 struct semaphore i_sem;
 struct rw_semaphore i_alloc_sem;
 struct semaphore i_zombie;
 struct inode_operations *i_op;
 struct file_operations *i_fop; /* former ->i_op->default_file_ops */
 struct super_block *i_sb;
 wait_queue_head_t i_wait;
 struct file_lock *i_flock;
 struct address_space *i_mapping;
 struct address_space i_data;
 struct dquot *i_dquot[MAXQUOTAS];
 /* These three should probably be a union */
 struct list_head i_devices;
 struct pipe_inode_info *i_pipe;
 struct block_device *i_bdev;
 struct char_device *i_cdev;

 unsigned long i_dnotify_mask; /* Directory notify events */
 struct dnotify_struct *i_dnotify; /* for directory notifications */

 unsigned long i_state;

 unsigned int i_flags;
 unsigned char i_sock;

41

www.manaraa.com

 atomic_t i_writecount;
 unsigned int i_attr_flags;
 __u32 i_generation;

 union u;
}

struct inode_operations {
 int (*create) (struct inode *,struct dentry *,int);
 struct dentry * (*lookup) (struct inode *,struct dentry *);
 int (*link) (struct dentry *,struct inode *,struct dentry *);
 int (*unlink) (struct inode *,struct dentry *);
 int (*symlink) (struct inode *,struct dentry *,const char *);
 int (*mkdir) (struct inode *,struct dentry *,int);
 int (*rmdir) (struct inode *,struct dentry *);
 int (*mknod) (struct inode *,struct dentry *,int,int);
 int (*rename) (struct inode *, struct dentry *,

struct inode *, struct dentry *);
 int (*readlink) (struct dentry *, char *,int);
 int (*follow_link) (struct dentry *, struct nameidata *);
 void (*truncate) (struct inode *);
 int (*permission) (struct inode *, int);
 int (*revalidate) (struct dentry *);
}

VFS dentry object

struct dentry {
 atomic_t d_count;
 unsigned int d_flags;
 struct inode * d_inode; /* Where the name belongs to - NULL is
negative */
 struct dentry * d_parent; /* parent directory */
 struct list_head d_hash; /* lookup hash list */
 struct list_head d_lru; /* d_count = 0 LRU list */
 struct list_head d_child; /* child of parent list */
 struct list_head d_subdirs; /* our children */
 struct list_head d_alias; /* inode alias list */
 int d_mounted;
 struct qstr d_name;
 unsigned long d_time; /* used by d_revalidate */
 struct dentry_operations *d_op;
 struct super_block * d_sb; /* The root of the dentry tree */
 unsigned long d_vfs_flags;
 void * d_fsdata; /* fs-specific data */
 unsigned char d_iname[DNAME_INLINE_LEN]; /* small names */
};

struct dentry_operations {
 int (*d_revalidate)(struct dentry *, int);
 int (*d_hash) (struct dentry *, struct qstr *);
 int (*d_compare) (struct dentry *, struct qstr *, struct qstr *);
 int (*d_delete)(struct dentry *);
 void (*d_release)(struct dentry *);
 void (*d_iput)(struct dentry *, struct inode *);
};

42

www.manaraa.com

VFS File Object

struct file {
 struct list_head f_list;
 struct dentry *f_dentry;
 struct vfsmount *f_vfsmnt;
 struct file_operations *f_op;
 atomic_t f_count;
 unsigned int f_flags;
 mode_t f_mode;
 loff_t f_pos;
 unsigned long f_reada, f_ramax, f_raend, f_ralen, f_rawin;
 struct fown_struct f_owner;
 unsigned int f_uid, f_gid;
 int f_error;

 size_t f_maxcount;
 unsigned long f_version;

 /* needed for tty driver, and maybe others */
 void *private_data;

 /* preallocated helper kiobuf to speedup O_DIRECT */
 struct kiobuf *f_iobuf;
 long f_iobuf_lock;
};

struct file_operations {
 struct module *owner;
 loff_t (*llseek) (struct file *, loff_t, int);
 ssize_t (*read) (struct file *, char *, size_t, loff_t *);
 ssize_t (*write) (struct file *, const char *, size_t, loff_t *);
 int (*readdir) (struct file *, void *, filldir_t);
 unsigned int (*poll) (struct file *, struct poll_table_struct *);
 int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned
long);
 int (*mmap) (struct file *, struct vm_area_struct *);
 int (*open) (struct inode *, struct file *);
 int (*flush) (struct file *);
 int (*release) (struct inode *, struct file *);
 int (*fsync) (struct file *, struct dentry *, int datasync);
 int (*fasync) (int, struct file *, int);
 int (*lock) (struct file *, int, struct file_lock *);
 ssize_t (*readv) (struct file *, const struct iovec *, unsigned long,
loff_t *);
 ssize_t (*writev) (struct file *, const struct iovec *, unsigned long,
loff_t *);
 ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t
*, int);
 unsigned long (*get_unmapped_area)(struct file *, unsigned long,
unsigned long, unsigned long, unsigned long);
};

file_system_type structure

struct file_system_type {
 const char *name;
 int fs_flags;
 struct super_block *(*read_super) (struct super_block *, void *, int);
 struct module *owner;

43

www.manaraa.com

 struct file_system_type * next;
 struct list_head fs_supers;
};

vfsmount structure

struct vfsmount
{
 struct list_head mnt_hash;
 struct vfsmount *mnt_parent; /* fs we are mounted on */
 struct dentry *mnt_mountpoint; /* dentry of mountpoint */
 struct dentry *mnt_root; /* root of the mounted tree */
 struct super_block *mnt_sb; /* pointer to superblock */
 struct list_head mnt_mounts; /* list of children, anchored here */
 struct list_head mnt_child; /* and going through their mnt_child */
 atomic_t mnt_count;
 int mnt_flags;
 char *mnt_devname; /* Name of device e.g. /dev/dsk/hda1 */
 struct list_head mnt_list;
};

nameidata structure

struct nameidata {
 struct dentry *dentry;
 struct vfsmount *mnt;
 struct qstr last;
 unsigned int flags;
 int last_type;
};

Buffer head structure

struct buffer_head {
 /* First cache line: */
 struct buffer_head *b_next; /* Hash queue list */
 unsigned long b_blocknr; /* block number */
 unsigned short b_size; /* block size */
 unsigned short b_list; /* List that this buffer appears */
 kdev_t b_dev; /* device (B_FREE = free) */

 atomic_t b_count; /* users using this block */
 kdev_t b_rdev; /* Real device */
 unsigned long b_state; /* buffer state bitmap (see above) */
 unsigned long b_flushtime;
 struct buffer_head *b_next_free;/* lru/free list linkage */
 struct buffer_head *b_prev_free;/* doubly linked list of buffers */
 struct buffer_head *b_this_page;/* circular list of buffers in one page
*/
 struct buffer_head *b_reqnext; /* request queue */
 struct buffer_head **b_pprev; /* doubly linked list of hash-queue */
 char * b_data; /* pointer to data block */
 struct page *b_page; /* the page this bh is mapped to */
 void (*b_end_io)(struct buffer_head *bh, int uptodate);
 void *b_private; /* reserved for b_end_io */
 unsigned long b_rsector; /* Real buffer location on disk */
 wait_queue_head_t b_wait;
 struct list_head b_inode_buffers; /* doubly linked list of inode
dirty buffers */
}

44

www.manaraa.com

Ext2 Super Block

struct ext2_super_block {
 __u32 s_inodes_count; /* Inodes count */
 __u32 s_blocks_count; /* Blocks count */
 __u32 s_r_blocks_count; /* Reserved blocks count */
 __u32 s_free_blocks_count; /* Free blocks count */
 __u32 s_free_inodes_count; /* Free inodes count */
 __u32 s_first_data_block; /* First Data Block */
 __u32 s_log_block_size; /* Block size */
 __s32 s_log_frag_size; /* Fragment size */
 __u32 s_blocks_per_group; /* # Blocks per group */
 __u32 s_frags_per_group; /* # Fragments per group */
 __u32 s_inodes_per_group; /* # Inodes per group */
 __u32 s_mtime; /* Mount time */
 __u32 s_wtime; /* Write time */
 __u16 s_mnt_count; /* Mount count */
 __s16 s_max_mnt_count; /* Maximal mount count */
 __u16 s_magic; /* Magic signature */
 __u16 s_state; /* File system state */
 __u16 s_errors; /* Behaviour when detecting errors */
 __u16 s_minor_rev_level; /* minor revision level */
 __u32 s_lastcheck; /* time of last check */
 __u32 s_checkinterval; /* max. time between checks */
 __u32 s_creator_os; /* OS */
 __u32 s_rev_level; /* Revision level */
 __u16 s_def_resuid; /* Default uid for reserved blocks */
 __u16 s_def_resgid; /* Default gid for reserved blocks */
 __u32 s_first_ino; /* First non-reserved inode */
 __u16 s_inode_size; /* size of inode structure */
 __u16 s_block_group_nr; /* block group # of this superblock */
 __u32 s_feature_compat; /* compatible feature set */
 __u32 s_feature_incompat; /* incompatible feature set */
 __u32 s_feature_ro_compat; /* readonly-compatible feature set */
 __u8 s_uuid[16]; /* 128-bit uuid for volume */
 char s_volume_name[16]; /* volume name */
 char s_last_mounted[64]; /* directory where last mounted */
 __u32 s_algorithm_usage_bitmap; /* For compression */
 __u8 s_prealloc_blocks; /* Nr of blocks to try to preallocate*/
 __u8 s_prealloc_dir_blocks; /* Nr to preallocate for dirs */
 __u16 s_padding1;
 __u32 s_reserved[204]; /* Padding to the end of the block */
};

45

www.manaraa.com

References

[1] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W. O Toole. “Semantic
file systems”. Proceedings of the Symposium on Operating Systems Principles, pages 16-
25, 1991.

[2] Ahmed Salama, Ahmed Samih Amr Ramadan, Karim M. Yousef. “GNU/Linux
Semantic Storage System”.

[3] Dominic Giampaolo. Practical File System Design with the Be File System. Morgan
Kaufmann Publishers, Inc, San Francisco, California, 1999.

[4] Paul Dourish et al. “Extending Document Management Systems with User-Specific
Active Properties”. ACM Transactions on Information Systems (TOIS), 18(2):140-170,
2000.

[5] Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel. O'Reilly, 2nd
edition, 2002.

[6] Robert Love. Linux Kernel Development. Novell Press, 2nd edition, 2005.

[7] Nick Murphy, Mark Tonkelowitz, and Mike Vernal. The design and implementation of
the database file system. 2002.

46

www.manaraa.com

Vita

Full Name: Naveen Akarapu

Date of Birth: August 30, 1980.

Place of Birth: Hyderabad, Andhra Pradesh, India.

Education: Bachelor of Technology in Computer Science and Engineering

 Jawaharlal Nehru Technological University, Hyderabad, India, 2001.

47

	RLINKS: A MECHANISM FOR NAVIGATING TO RELATED FILES
	Recommended Citation

	ABSTRACT OF THESIS
	RLINKS: A MECHANISM FOR NAVIGATING TO RELATED FILES
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	1. Introduction
	2. Related Work
	3. Problem Explanation
	4. Background
	4.1 System calls
	4.2 The Virtual Filesystem
	4.3 Buffer cache
	4.4 Page I/O and block I/O
	4.5 Kernel Synchronization
	4.6 The Ext2 Filesystem

	5. Relative Links (rlinks)
	6. Implementation of Rlinks
	6.1 System calls
	6.2 Implementation design
	6.2.1 VFS Layer
	6.2.2 RelExt2 Layer
	6.2.3 Rlink block layer

	6.3 System call algorithms
	6.3.1 The rlink() system call
	6.3.2 The readrlink() system call
	6.3.3 The unrlink() system call

	7.Applications
	7.1 Rlinks as connecting related files
	7.2 Rlinks to represent a graph

	8 Conclusions
	9 Future Work
	Appendix A: Rlink Permission semantics
	Appendix B: Data Structures Reference
	References
	Vita

